3.1.50 \(\int \cos (c+d x) (b \sec (c+d x))^{4/3} (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [50]

Optimal. Leaf size=146 \[ -\frac {3 b^2 (4 A+C) \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};\cos ^2(c+d x)\right ) \sin (c+d x)}{8 d (b \sec (c+d x))^{2/3} \sqrt {\sin ^2(c+d x)}}+\frac {3 b B \, _2F_1\left (-\frac {1}{6},\frac {1}{2};\frac {5}{6};\cos ^2(c+d x)\right ) \sqrt [3]{b \sec (c+d x)} \sin (c+d x)}{d \sqrt {\sin ^2(c+d x)}}+\frac {3 b C \sqrt [3]{b \sec (c+d x)} \tan (c+d x)}{4 d} \]

[Out]

-3/8*b^2*(4*A+C)*hypergeom([1/3, 1/2],[4/3],cos(d*x+c)^2)*sin(d*x+c)/d/(b*sec(d*x+c))^(2/3)/(sin(d*x+c)^2)^(1/
2)+3*b*B*hypergeom([-1/6, 1/2],[5/6],cos(d*x+c)^2)*(b*sec(d*x+c))^(1/3)*sin(d*x+c)/d/(sin(d*x+c)^2)^(1/2)+3/4*
b*C*(b*sec(d*x+c))^(1/3)*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 146, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.128, Rules used = {16, 4132, 3857, 2722, 4131} \begin {gather*} -\frac {3 b^2 (4 A+C) \sin (c+d x) \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};\cos ^2(c+d x)\right )}{8 d \sqrt {\sin ^2(c+d x)} (b \sec (c+d x))^{2/3}}+\frac {3 b B \sin (c+d x) \sqrt [3]{b \sec (c+d x)} \, _2F_1\left (-\frac {1}{6},\frac {1}{2};\frac {5}{6};\cos ^2(c+d x)\right )}{d \sqrt {\sin ^2(c+d x)}}+\frac {3 b C \tan (c+d x) \sqrt [3]{b \sec (c+d x)}}{4 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]*(b*Sec[c + d*x])^(4/3)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(-3*b^2*(4*A + C)*Hypergeometric2F1[1/3, 1/2, 4/3, Cos[c + d*x]^2]*Sin[c + d*x])/(8*d*(b*Sec[c + d*x])^(2/3)*S
qrt[Sin[c + d*x]^2]) + (3*b*B*Hypergeometric2F1[-1/6, 1/2, 5/6, Cos[c + d*x]^2]*(b*Sec[c + d*x])^(1/3)*Sin[c +
 d*x])/(d*Sqrt[Sin[c + d*x]^2]) + (3*b*C*(b*Sec[c + d*x])^(1/3)*Tan[c + d*x])/(4*d)

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2722

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
)*Sqrt[Cos[c + d*x]^2]))*Hypergeometric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2], x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rule 3857

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x])^(n - 1)*((Sin[c + d*x]/b)^(n - 1)
*Int[1/(Sin[c + d*x]/b)^n, x]), x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 4131

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(-C)*Cot
[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x
] /; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 4132

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rubi steps

\begin {align*} \int \cos (c+d x) (b \sec (c+d x))^{4/3} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx &=b \int \sqrt [3]{b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx\\ &=b \int \sqrt [3]{b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx+B \int (b \sec (c+d x))^{4/3} \, dx\\ &=\frac {3 b C \sqrt [3]{b \sec (c+d x)} \tan (c+d x)}{4 d}+\frac {1}{4} (b (4 A+C)) \int \sqrt [3]{b \sec (c+d x)} \, dx+\left (B \sqrt [3]{\frac {\cos (c+d x)}{b}} \sqrt [3]{b \sec (c+d x)}\right ) \int \frac {1}{\left (\frac {\cos (c+d x)}{b}\right )^{4/3}} \, dx\\ &=\frac {3 b B \, _2F_1\left (-\frac {1}{6},\frac {1}{2};\frac {5}{6};\cos ^2(c+d x)\right ) \sqrt [3]{b \sec (c+d x)} \sin (c+d x)}{d \sqrt {\sin ^2(c+d x)}}+\frac {3 b C \sqrt [3]{b \sec (c+d x)} \tan (c+d x)}{4 d}+\frac {1}{4} \left (b (4 A+C) \sqrt [3]{\frac {\cos (c+d x)}{b}} \sqrt [3]{b \sec (c+d x)}\right ) \int \frac {1}{\sqrt [3]{\frac {\cos (c+d x)}{b}}} \, dx\\ &=\frac {3 b B \, _2F_1\left (-\frac {1}{6},\frac {1}{2};\frac {5}{6};\cos ^2(c+d x)\right ) \sqrt [3]{b \sec (c+d x)} \sin (c+d x)}{d \sqrt {\sin ^2(c+d x)}}-\frac {3 b (4 A+C) \cos (c+d x) \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};\cos ^2(c+d x)\right ) \sqrt [3]{b \sec (c+d x)} \sin (c+d x)}{8 d \sqrt {\sin ^2(c+d x)}}+\frac {3 b C \sqrt [3]{b \sec (c+d x)} \tan (c+d x)}{4 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 1.60, size = 303, normalized size = 2.08 \begin {gather*} \frac {3 b \sqrt [3]{b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (-\frac {i \sqrt [3]{2} e^{-i (c+d x)} \sqrt [3]{\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \left (4 B \left (1+e^{2 i (c+d x)}\right )+4 B \left (-1+e^{2 i c}\right ) \sqrt [3]{1+e^{2 i (c+d x)}} \, _2F_1\left (-\frac {1}{3},\frac {1}{3};\frac {2}{3};-e^{2 i (c+d x)}\right )+(4 A+C) e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt [3]{1+e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{6},\frac {1}{3};\frac {7}{6};-e^{2 i (c+d x)}\right )\right )}{-1+e^{2 i c}}+\sqrt [3]{\sec (c+d x)} (4 B \cos (d x) \csc (c)+C \tan (c+d x))\right )}{2 d (A+2 C+2 B \cos (c+d x)+A \cos (2 (c+d x))) \sec ^{\frac {7}{3}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]*(b*Sec[c + d*x])^(4/3)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(3*b*(b*Sec[c + d*x])^(1/3)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*(((-I)*2^(1/3)*(E^(I*(c + d*x))/(1 + E^((2
*I)*(c + d*x))))^(1/3)*(4*B*(1 + E^((2*I)*(c + d*x))) + 4*B*(-1 + E^((2*I)*c))*(1 + E^((2*I)*(c + d*x)))^(1/3)
*Hypergeometric2F1[-1/3, 1/3, 2/3, -E^((2*I)*(c + d*x))] + (4*A + C)*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*(1 + E
^((2*I)*(c + d*x)))^(1/3)*Hypergeometric2F1[1/6, 1/3, 7/6, -E^((2*I)*(c + d*x))]))/(E^(I*(c + d*x))*(-1 + E^((
2*I)*c))) + Sec[c + d*x]^(1/3)*(4*B*Cos[d*x]*Csc[c] + C*Tan[c + d*x])))/(2*d*(A + 2*C + 2*B*Cos[c + d*x] + A*C
os[2*(c + d*x)])*Sec[c + d*x]^(7/3))

________________________________________________________________________________________

Maple [F]
time = 0.43, size = 0, normalized size = 0.00 \[\int \cos \left (d x +c \right ) \left (b \sec \left (d x +c \right )\right )^{\frac {4}{3}} \left (A +B \sec \left (d x +c \right )+C \left (\sec ^{2}\left (d x +c \right )\right )\right )\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(b*sec(d*x+c))^(4/3)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x)

[Out]

int(cos(d*x+c)*(b*sec(d*x+c))^(4/3)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(b*sec(d*x+c))^(4/3)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(b*sec(d*x + c))^(4/3)*cos(d*x + c), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(b*sec(d*x+c))^(4/3)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

integral((C*b*cos(d*x + c)*sec(d*x + c)^3 + B*b*cos(d*x + c)*sec(d*x + c)^2 + A*b*cos(d*x + c)*sec(d*x + c))*(
b*sec(d*x + c))^(1/3), x)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(b*sec(d*x+c))**(4/3)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(b*sec(d*x+c))^(4/3)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(b*sec(d*x + c))^(4/3)*cos(d*x + c), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \cos \left (c+d\,x\right )\,{\left (\frac {b}{\cos \left (c+d\,x\right )}\right )}^{4/3}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right ) \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)*(b/cos(c + d*x))^(4/3)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2),x)

[Out]

int(cos(c + d*x)*(b/cos(c + d*x))^(4/3)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2), x)

________________________________________________________________________________________